Overview
To access this data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00134) in the “Choose a Dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal.
Description
A dried blood spot (DBS) collection in Round 7 (2017) of NHATS provided the biological material for genotyping. Samples were genotyped at Erasmus Medical Center in Rotterdam, Netherlands on the Illumina Infinium Global Screening Array v3.0. The array contains clinical and rare variants ideal for multiethnic populations. After quality control steps removing variants with high (>5%) missingness and individuals with high missingness (>5%), a total of 700,009 variants and 4,006 samples were included in the NHATS genetic dataset. Quality control was performed at the Arking Lab at the Johns Hopkins University and validated independently at the University of Michigan. We include genotyped data (build hg19/GRCh37 plink format), TOPMed imputed data (build GRCh38, vcf format), ancestry-specific analytic groups, as well as recommended sample filtering information. Within ancestry principal components are available from the NHATS study by request.
Self-reported primary race/ethnicity with missing values assigned the modal category indicated 729 non-Hispanic Black, 2,962 non-Hispanic White, 223 Hispanic, and 92 other race/ethnicity samples (see population breakdown below). For detail about each self-reported race/ethnicity group see the NHATS User Guide [https://nhats.org/researcher/nhats/methods-documentation?id=user_guide]. To request phenotype data for participants in this study, apply at https://www.nhats.org/researcher/data-access/sensitive-data-files?id=restricted_data_files
Male | Female | Total | |
---|---|---|---|
Non-Hispanic White | 1,261 | 1,701 | 2,962 |
Non-Hispanic Black | 279 | 450 | 729 |
Other* | 44 | 48 | 92 |
Hispanic | 87 | 136 | 223 |
Total | 1,671 | 2,335 | 4,006 |
Sample Summary per Data Type
Sample Set | Accession | Data Type | Number of Samples |
---|---|---|---|
National Health & Aging Trends Study (NHATS) GWAS | snd10042 | GWAS | 4,006 |
Available Filesets
Name | Accession | Latest Release | Description |
---|---|---|---|
NHATS GWAS: Genotype data | fsa000044 | NG00134.v1 | Genotype data |
NHATS GWAS: TOPMed imputation data | fsa000045 | NG00134.v1 | TOPMed imputation data |
View the File Manifest for a full list of files released in this dataset.
Sample information
Provided in this dataset is a set of GWAS files that underwent a process of quality control measures by the Arking Lab at the Johns Hopkins University, as well as imputed genotypes from the TOPMed reference panel. 4,006 subjects were genotyped at the Erasmus Medical Center in Rotterdam, Netherlands on the Illumina Infinium Global Screening Array v3.0, which captures genotype data on 700,009 genomic SNPs.
Sample Set | Accession Number | Number of Subjects | Number of Samples |
---|---|---|---|
National Health and Aging Trends Study (NHATS) GWAS | snd10042 | 4,006 | 4,006 |
Related Studies
Consent Levels
Consent Level | Number of Subjects |
---|---|
GRU-IRB-PUB-NPU | 4,006 |
Visit the Data Use Limitations page for definitions of the consent levels above.
Approved Users
- Investigator:Cruchaga, CarlosInstitution:Washington University School of MedicineProject Title:The Familial Alzheimer Sequencing (FASe) ProjectDate of Approval:May 9, 2024Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:The goal of this study is to identify new genes and mutations that cause or increase risk for Alzheimer disease (AD), as well as protective factors. Individuals and families were selected from the Knight-ADRC (Washington University) and the NIA-LOAD study. Only families with at least three first-degree affected individuals were included. Families with pathogenic variants in the known AD or FTD genes, or in which APOE4 segregated with disease were excluded. At least two cases and one control were selected per family. Cases had an age at onset (AAO) after 65 yo and controls had a larger age at last assessment than the latest AAO within the family. Whole exome (WES) and whole genome sequencing (WGS) was generated for 1,235 individuals (285 families) that together with data from our collaborators and the ADSP family-based cohort (3,449 individuals and 757 families) will provide enough statistical power to identify new genes for AD. Dr. Tanzi (Harvard Medical School) will provide WGS from 400 families from the NIMH Alzheimer disease genetics initiative study. We will perform single variant and gene-based analyses to identify genes and variants that increase risk for disease in AD families. Single variant analysis will consist of a combination of association and segregation analyses. We will run family-based gene-based methods to identify genes that show and overall enrichment of variants in AD cases. We will also look for protective and modifier variants. To do this we will identify families loaded with AD cases, that also include individuals with a high burden of known risk variants but that do not develop the disease (escapees). We will use the sequence data and the family structure to identify variants that segregate with the escapee phenotype. The most promising variants and genes will be replicated in independent datasets (ADSP case-control, ADNI, Knight-ADRC, NIA-LOAD ). We will perform single variant and gene-based analyses to replicate the initial findings, and survival analysis to replicate the protective variants. We will select the most promising variants/genes for functional studiesNon-Technical Research Use Statement:Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding APP, PSEN1 and PSEN2. The identification of these genes led to the A?-cascade hypothesis and to the development of drugs that target this pathway. Recently, we have identified rare coding variants in TREM2, ABCA7, PLD3 and SORL1 with large effect sizes for risk for AD, confirming that rare coding variants play a role in the etiology of AD. In this proposal, we will identify rare risk and protective alleles using sequence data from families densely affected by AD. We hypothesize that these families are enriched for genetic risk factors. We already have sequence data from 695 families (2,462 individuals), that combined with the ADSP and the NIMH dataset will lead to a dataset of more than 1,042 families (4,684 individuals). Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found, which will lead to a better understanding of the biology of the disease.
- Investigator:Wainberg, MichaelInstitution:Sinai Health SystemProject Title:Uncovering the causal genetic variants, genes and cell types underlying brain disordersDate of Approval:September 5, 2024Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:We propose a multifaceted approach to elucidate and interpret genetic risk factors for Alzheimer's disease. First, we propose to perform a whole-genome sequencing meta-analysis of the Alzheimer's Disease Sequencing Project with the UK Biobank and All of Us to associate rare coding and non-coding variants with Alzheimer's disease and related dementias. We will explore a variety of case definitions in the UK Biobank and All of Us, including those based on ICD codes from electronic medical records (inpatient, primary care and/or death), self-report of Alzheimer's disease or Alzheimer's disease and related dementias, and/or family history of Alzheimer's disease or Alzheimer's disease and related dementias. We will perform single-variant, coding-variant burden, and non-coding variant burden tests using the REGENIE genome-wide association study toolkit.Second, we propose to develop statistical and machine learning models that can effectively infer (“fine-map”) the causal gene(s), variant(s), and cell type(s) underlying each association we find, as well as associations from existing genome-wide association studies and other Alzheimer's- and aging-related cohorts found in NIAGADS. In particular, we propose to improve causal gene identification by incorporating knowledge of gene function as a complement to functional genomics. For instance, we plan to develop improved methods for inferring biological networks, particularly from single-cell data, and integrate these networks with the results of the non-coding associations from our first aim to fine-map causal genes. To fine-map causal variants and cell types, we plan to integrate the associations from our first aim with single-nucleus chromatin accessibility data from postmortem brain cohorts to simultaneously infer which variant(s) are causal for each discovered locus and which cell type(s) they act through.Non-Technical Research Use Statement:We have a comprehensive plan to understand and explain the genetic factors that contribute to Alzheimer's disease. Our approach involves two main steps.First, we'll analyze genetic information from large research databases to identify rare genetic changes associated with Alzheimer's and related memory disorders. We'll look at both specific changes in genes and other parts of the genetic code. We'll use data from different studies and combine them to get a clearer picture.Second, we'll create advanced computer models that can help us figure out which specific genes, genetic changes, and cell types are responsible for these associations. This will help us pinpoint the most important factors contributing to Alzheimer's disease. We'll also analyze data from previous studies to build a more complete understanding of these genetic links.
- Investigator:Xiao, PengInstitution:University of Nebrask Medical CenterProject Title:Uncovering the genetic basis of Alzheimer's Diseases by integrating GWAS with multiomics approaches across different ethnicitiesDate of Approval:August 9, 2024Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:ObjectivesIn this study we aim to understand the system level understanding of Alzheimer's disease (AD) by integrating GWAS with robust multiomics datasets across diverse ethnic groups and harmonization of the results to include associated genes and pathways to understand underlying disease mechanisms and to inform our understanding of biological continuum of the diseases. Investigating AD associated variants as quantitative trait loci for epigenetic, transcriptomic, and proteomic layers to explore how variants in genes perturb pathways leading to AD.Study designWe will comprehensively examine the genetic architecture of Alzheimer's diseases based on different races (Caucasians, Latinos, Asians and Africans) GWAS data from publicly available datasets. We request access to as many datasets available in NIAGADS and other repositories like EADB-consortium, IGAP and we also have requested access to datasets through our literature search from corresponding authors for Asian cohorts. We will perform meta-analysis at two levels for GWAS datasets and find genome wide significant loci (GWS). Mendelian randomization analyses will be adapted to multi-omics setting through analyzing QTLs and GWS. We will perform correlation and enrichment analysis for significant findings from different omics layers.Analysis PlanGenome wide meta-analysis across different races to identify new loci and functional pathways influencing AD. Find genes most likely to be responsible for association signal with AD at each loci by applying mendelian randomization (MR) method. We plan to use MR method to combine multiomics (GWAS, eqtl, mqtl, aqtl and pqtl).Non-Technical Research Use Statement:To our knowledge our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of AD pathogenesis and define catalogues of candidate genes. In addition, rare or population specific common variants can be identified thus genes with underlying genetic support for an association with AD are likely to encode successful drug targets in clinical development. This should further lead to patient stratification.
- Investigator:Zhao, JinyingInstitution:University of FloridaProject Title:Identifying novel biomarkers for human complex diseases using an integrated multi-omics approachDate of Approval:November 21, 2023Request status:ExpiredResearch use statements:Show statementsTechnical Research Use Statement:GWAS, WES and WGS have identified many genes associated with Alzheimer’s Dementia (AD) and its related traits. However, the identified genes thus far collectively explain only a small proportion of disease heritability, suggesting that more genes remained to be identified. Moreover, there is a clear gender and ethnic disparity for AD susceptibility, but little research has been done to identify gender- and ethnic-specific variants associated with AD. Of the many challenges for deciphering AD pathology, lacking of efficient and power statistical methods for genetic association mapping and causal inference represents a major bottleneck. To tackle this challenge, we have developed a set of novel statistical and bioinformatics approaches for genetic association mapping and multi-omics causation inference in large-scale ethnicity-specific epidemiological studies. The goal of this project is to leverage the multi-omics and clinical data archived by the ADSP, ADNI, ADGC as well as other AD-related data repositories to identify novel genes and molecular markers for AD. Specifically, we will (1) validate our novel methods for identifying novel risk and protective genomic variants and multi-omics causal pathways of AD; (2) identify novel ethnicity- and gender-specific genes and molecular causal pathways of AD. We will share our results, statistical methods and computational software with the scientific community.Non-Technical Research Use Statement:Although many genes have been associated with Alzheimer’s Dementia (AD), these genes altogether explain only a small fraction of disease etiology, suggesting more genes remained to be identified. Of the many challenges for deciphering AD pathology, lacking of power statistical methods represents a major bottleneck. To tackle this challenge, we have developed a set of novel statistical and bioinformatics approaches for genetic association mapping and multi-omics causation inference in large-scale ethnicity-specific epidemiological studies. The goal of this project is to leverage the rich genetic and other omic data along with clinical data archived by the ADSP, ADNI, ADGC as well as other AD-related data repositories to identify novel genes and molecular markers for AD. Such results will enhance our understanding of AD pathogenesis and may also serve as biomarkers for early diagnosis and therapeutic targets.
Acknowledgement
Acknowledgment statement for any data distributed by NIAGADS:
Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.
Use the study-specific acknowledgement statements below (as applicable):
For investigators using any data from this dataset:
Please cite/reference the use of NIAGADS data by including the accession NG00134.
For investigators using National Health and Aging Trends Study (NHATS) (sa000030) data:
In text: “National Health and Aging Trends Study (NHATS) is sponsored by the National Institute on Aging (grant number NIA U01AG32947) and conducted by the Johns Hopkins University.”
In references: “National Health and Aging Trends Study. Produced and distributed by www.nhats.org with funding from the National Institute on Aging (grant number NIA U01AG32947).”