To access this data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00144) in the “Choose a dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal.

Description

To better capture the polygenic architecture of Alzheimer’s Disease (AD), we developed a joint genetic score, MetaGRS. We incorporated genetic variants for AD and 24 other traits from two independent cohorts, NACC (n = 3,174, training set) and UPitt (n = 2,053, validation set). We also conducted APOE-stratified analyses to assess the role of the e4 allele on risk prediction. This dataset includes regression results for the MetaGRS to predict Alzheimer’s disease survival (Cox regression) or disease status (logistic regression).

Available Filesets

NameAccessionLatest ReleaseDescription
MetaGRSfsa000048NG00144.v1MetaGRS files and readme

View the File Manifest for a full list of files released in this dataset.

Consent LevelNumber of Subjects
DS-ADRD-IRB-PUB-NPUNA

Visit the Data Use Limitations page for definitions of the consent levels above.

Total number of approved DARs: 1
  • Investigator:
    Zhao, Jinying
    Institution:
    University of Florida
    Project Title:
    Identifying novel biomarkers for human complex diseases using an integrated multi-omics approach
    Date of Approval:
    November 21, 2023
    Request status:
    Approved
    Research use statements:
    Show statements
    Technical Research Use Statement:
    GWAS, WES and WGS have identified many genes associated with Alzheimer’s Dementia (AD) and its related traits. However, the identified genes thus far collectively explain only a small proportion of disease heritability, suggesting that more genes remained to be identified. Moreover, there is a clear gender and ethnic disparity for AD susceptibility, but little research has been done to identify gender- and ethnic-specific variants associated with AD. Of the many challenges for deciphering AD pathology, lacking of efficient and power statistical methods for genetic association mapping and causal inference represents a major bottleneck. To tackle this challenge, we have developed a set of novel statistical and bioinformatics approaches for genetic association mapping and multi-omics causation inference in large-scale ethnicity-specific epidemiological studies. The goal of this project is to leverage the multi-omics and clinical data archived by the ADSP, ADNI, ADGC as well as other AD-related data repositories to identify novel genes and molecular markers for AD. Specifically, we will (1) validate our novel methods for identifying novel risk and protective genomic variants and multi-omics causal pathways of AD; (2) identify novel ethnicity- and gender-specific genes and molecular causal pathways of AD. We will share our results, statistical methods and computational software with the scientific community.
    Non-Technical Research Use Statement:
    Although many genes have been associated with Alzheimer’s Dementia (AD), these genes altogether explain only a small fraction of disease etiology, suggesting more genes remained to be identified. Of the many challenges for deciphering AD pathology, lacking of power statistical methods represents a major bottleneck. To tackle this challenge, we have developed a set of novel statistical and bioinformatics approaches for genetic association mapping and multi-omics causation inference in large-scale ethnicity-specific epidemiological studies. The goal of this project is to leverage the rich genetic and other omic data along with clinical data archived by the ADSP, ADNI, ADGC as well as other AD-related data repositories to identify novel genes and molecular markers for AD. Such results will enhance our understanding of AD pathogenesis and may also serve as biomarkers for early diagnosis and therapeutic targets.

Acknowledgment statement for any data distributed by NIAGADS:

Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.

Use the study-specific acknowledgement statements below (as applicable):

For investigators using any data from this dataset:

Please cite/reference the use of NIAGADS data by including the accession NG00144.

For investigators using The Prediction of Alzheimer’s Disease through Multi-Trait Genetic Modeling (sa000033) data:

The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984; samples from the National Centralized Repository for Alzheimer’s Disease and Related Dementias (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this study. Sequencing data generation and harmonization is supported by the Genome Center for Alzheimer’s Disease, U54AG052427, and data sharing is supported by NIAGADS, U24AG041689. We thank contributors who collected samples used in this study, as well as patients and their families, whose help and participation made this work possible.

The NACC database is funded by NIA/NIH Grant U24 AG072122. NIH grants supported enrollment and data collection for the individual studies including the Alzheimer’s Disease Centers (ADC, P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD). The Miami ascertainment and research were supported in part through: RF1AG054080, R01AG027944, R01AG019085, R01AG028786-02, RC2AG036528. The Columbia ascertainment and research were supported in part through R37AG015473 and U24AG056270. The University of Washington ascertainment and research were supported in part through R01AG044546, RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877. The University of Pittsburgh ascertainment and research were supported in part through AG030653 and AG005133.

  • Clark K, Leung YY, Lee WP, Voight B, Wang LS. Polygenic Risk Scores in Alzheimer’s Disease Genetics: Methodology, Applications, Inclusion, and Diversity. J Alzheimers Dis. 2022. doi: 10.3233/JAD-220025. PubMed link