Overview
To access this data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00146) in the “Choose a Dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal.
Description
This dataset includes individual level data from Singapore-Longitudinal study of Vascular Cognitive Impairment and Dementia. This includes both genotyping (raw and imputed) on the Infinium Global Screening Array-24 Kit as well as phenotypic data including age, sex, and overall cognitive diagnosis. There were total of 390 subjects that were enrolled in the study and 385 subjects passed QC filtering.
Participants were recruited from memory clinics in 2 study sites in Singapore (National University Hospital and Saint Luke’s Hospital). Four diagnostic categories at baseline were eligible for inclusion in this study:(1) No cognitive impairment (NCI): individuals who had no objective cognitive impairment on neuropsychological tests, or functional loss, (2) Cognitive impairment no dementia (CIND) was diagnosed in patients who were impaired in at least one cognitive domain on a neuropsychological test battery without loss of daily functions. (3) Vascular CIND was defined as a history of ischemic stroke within the past 6–24 months and neuroimaging evidence of cerebral infarction, with objective evidence of neuropsychological deficits. (4) Dementia was diagnosed according to Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) criteria.
Sample Summary per Data Type
Sample Set | Accession | Data Type | Number of Samples |
---|---|---|---|
Singapore GWAS | snd10047 | Genotyping SNP Array | 390 |
Available Filesets
Name | Accession | Latest Release | Description |
---|---|---|---|
Singapore GWAS: Genotype, phenotype and Imputation data | fsa000064 | NG00146.v1 | Genotype, Phenotype and Imputation data |
View the File Manifest for a full list of files released in this dataset.
Sample information
This dataset contains 390 subjects that were genotyped using the Infinium Global Screening Array-24, resulting in a total of 381,787 genomic SNPs. Of these, 385 subjects passed QC filtering. Additionally, the imputed genotypes are from a 1000G reference panel.
Sample Set | Accession Number | Number of Subjects | Number of Samples |
---|---|---|---|
Singapore GWAS | snd10047 | 390 | 390 |
Related Studies
- Participants were recruited from memory clinics in 2 study sites in Singapore (National University Hospital and Saint Luke’s Hospital). Assessments of participants were performed from August 12, 2010, to July…
Consent Levels
Consent Level | Number of Subjects |
---|---|
HMB-IRB-PUB-NPU-GSO | 390 |
Visit the Data Use Limitations page for definitions of the consent levels above.
Acknowledgement
Acknowledgment statement for any data distributed by NIAGADS:
Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.
Use the study-specific acknowledgement statements below (as applicable):
For investigators using any data from this dataset:
Please cite/reference the use of NIAGADS data by including the accession NG00146.
For investigators using Singapore Longitudinal study of Vascular Cognitive Impairment and Dementia (sa000037) data:
National Medical Research Council center grants under Award numbers ]NMRC/NUHCS/2010] and [NMRC/NUHS/2010] [R-184-006-184-511]. NIHAG052409, titled “ADSP Follow-up in Multi-Ethnic Cohorts via Endophenotypes, Omics & Model Systems”.
Related Publications
van Veluw SJ., et al. Cortical microinfarcts on 3T MRI: Clinical correlates in memory-clinic patients. Alzheimers Dement. 2015 Dec;11(12):1500-1509. doi: 10.1016/j.jalz.2014.12.010. Epub 2015 May 5. Pubmed Link
Hilal S., et al. Cortical cerebral microinfarcts predict cognitive decline in memory clinic patients. J Cereb Blood Flow Metab. 2020 Jan;40(1):44-53. doi: 10.1177/0271678X19835565. Epub 2019 Mar 19. Pubmed Link
Hilal S., et al. Association Between Subclinical Cardiac Biomarkers and Clinically Manifest Cardiac Diseases With Cortical Cerebral Microinfarcts. JAMA Neurol. 2017 Apr 1;74(4):403-410. doi: 10.1001/jamaneurol.2016.5335.Pubmed Link
Approved Users
- Investigator:Belloy, MichaelInstitution:Washington University in St LouisProject Title:Elucidating sex-specific risk for Alzheimer's disease through state-of-the-art genetics and multi-omicsDate of Approval:January 6, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:• Objectives: In this project, we seek to holistically investigate the genetic and molecular drivers of sex dimorphism in Alzheimer’s disease across ancestries. • Study design: This study integrates large-scale population genetics with multi-omics and endophenotype analyses. We are integrating all data available from ADGC and ADSP, together with other data from AMP-AD and biobanks such as UKB, FinnGen, and MVP to conduct large-scale multi-ancestry GWAS, rare-variant gene aggregation analyses, QTL studies, PWAS, TWAS, etc. We also particularly focus on X chromosome association studies. The study design also interrogates interactions with ancestry, hormone exposures, and with APOE*4, as well as comparisons to non-stratified GWAS/XWAS of Alzheimer’s disease. Further, we will also employ genetic correlation analyses, mendelian randomization, colocalization, and pleiotropy analyses, to interrogate overlap with other complex traits to better understand the mechanisms underlying sex dimorphism in Alzheimer’s disease. • Analysis plan, including the phenotypic characteristics that will be evaluated in association with genetic variants: Our phenotypes will include Alzheimer’s disease risk, conversion risk, various endophenotypes (including amyloid/tau biomarkers, brain imaging metrics, etc.) as well as molecular traits. As noted above, we will conduct large-scale multi-ancestry GWAS, XWAS, rare-variant gene aggregation analyses, QTL studies, PWAS, TWAS, etc. Specific aims include interrogating these question and analyses on (1) the autosomes, (2) the X chromosome, and (3) leveraging sex stratified QTL studies to drive discovery of risk genes.Non-Technical Research Use Statement:Alzheimer’s disease (AD) manifests itself differently across men and women, but the genetic and molecular factors that drive this remain elusive. AD is the most common cause of dementia and till today remains largely untreatable. It is thus crucial to study the genetics of AD in a sex-specific manner, as this will help the field gain important insights into disease pathophysiology, identify novel sex-specific risk factors relevant to personalized genetic medicine, and uncover potential new AD drug targets that may benefit both sexes. This project uses large-scale genomics and multi-omics to elucidate novel sex agnostic and sex-specific AD risk genes. We will interrogate sex dimorphism for AD risk on the autosomes and the sex chromosomes. We similarly interrogate sex dimorphism in the genetic regulation of gene expression and protein levels, which we will integrate with genetic risk for Alzheimer’s disease to further discovery risk genes. Throughout, we will also interrogate how sex-specific risk for AD interactions with hormone exposures, ancestry, and the APOE*4 risk allele.
- Investigator:Cruchaga, CarlosInstitution:Washington University School of MedicineProject Title:The Familial Alzheimer Sequencing (FASe) ProjectDate of Approval:March 18, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:The goal of this study is to identify new genes and mutations that cause or increase risk for Alzheimer disease (AD), as well as protective factors. Individuals and families were selected from the Knight-ADRC (Washington University) and the NIA-LOAD study. Only families with at least three first-degree affected individuals were included. Families with pathogenic variants in the known AD or FTD genes, or in which APOE4 segregated with disease were excluded. At least two cases and one control were selected per family. Cases had an age at onset (AAO) after 65 yo and controls had a larger age at last assessment than the latest AAO within the family. Whole exome (WES) and whole genome sequencing (WGS) was generated for 1,235 individuals (285 families) that together with data from our collaborators and the ADSP family-based cohort (3,449 individuals and 757 families) will provide enough statistical power to identify new genes for AD. Dr. Tanzi (Harvard Medical School) will provide WGS from 400 families from the NIMH Alzheimer disease genetics initiative study. We will perform single variant and gene-based analyses to identify genes and variants that increase risk for disease in AD families. Single variant analysis will consist of a combination of association and segregation analyses. We will run family-based gene-based methods to identify genes that show and overall enrichment of variants in AD cases. We will also look for protective and modifier variants. To do this we will identify families loaded with AD cases, that also include individuals with a high burden of known risk variants but that do not develop the disease (escapees). We will use the sequence data and the family structure to identify variants that segregate with the escapee phenotype. The most promising variants and genes will be replicated in independent datasets (ADSP case-control, ADNI, Knight-ADRC, NIA-LOAD ). We will perform single variant and gene-based analyses to replicate the initial findings, and survival analysis to replicate the protective variants. We will select the most promising variants/genes for functional studiesNon-Technical Research Use Statement:Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding APP, PSEN1 and PSEN2. The identification of these genes led to the A?-cascade hypothesis and to the development of drugs that target this pathway. Recently, we have identified rare coding variants in TREM2, ABCA7, PLD3 and SORL1 with large effect sizes for risk for AD, confirming that rare coding variants play a role in the etiology of AD. In this proposal, we will identify rare risk and protective alleles using sequence data from families densely affected by AD. We hypothesize that these families are enriched for genetic risk factors. We already have sequence data from 695 families (2,462 individuals), that combined with the ADSP and the NIMH dataset will lead to a dataset of more than 1,042 families (4,684 individuals). Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found, which will lead to a better understanding of the biology of the disease.
- Investigator:Konermann, SilvanaInstitution:Arc instituteProject Title:Modeling Alzheimer’s disease risk and associated molecular phenotypesDate of Approval:August 8, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:The objective of the proposed research is to determine the relationship between Alzheimer’s disease (AD) genetic risk and associated molecular phenotypes. Genotype data will be used to compute a polygenic risk score (PRS) for disease-affected and control (non-disease-affected) participants. Statistical regression and mediation analyses will be used to model variation of molecular phenotypes with respect to PRS and, where available, pathology stage or cognitive impairment. Molecular phenotypes to be analyzed include bulk/single-cell/single-nucleus transcriptome, epigenome, proteome, metabolome, lipidome, amyloid, and tau. Molecular phenotypes of participants, including controls, will be matched with molecular phenotypes of in vitro cellular models, informing the design of in vitro perturbation experiments that recapitulate the genetic drivers of AD risk.Non-Technical Research Use Statement:Our goal is to determine the relationship between human genetic profiles associated with Alzheimer’s disease (AD) risk and specific measurable characteristics of human cells. Using multiple statistical analysis methods, we will build quantitative models that describe how those characteristics vary as a function of AD genetic risk. The models we build will help us design in vitro cellular systems that reflect different levels of AD risk, enabling experiments that inform new strategies for treating or preventing AD.
- Investigator:Seshadri, SudhaInstitution:Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TXProject Title:Therapeutic target discovery in ADSP data via comprehensive whole-genome analysis incorporating ethnic diversity and systems approachesDate of Approval:August 12, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:Objective: Utilize ADSP data sets to identify genes & specific genetic variants that confer risk for or protection from Alzheimer disease. Aim 1: Using combined WGS/WES across the ADSP Discovery, Disc-Ext, and FUS Phases, including single nucleotide variants, small insertion/deletions, and structural variants. We will: Aim 1a. Perform whole genome single variant and rare variant case/control association analyses of AD using ADSP and other available data; Aim 1b. Target protective variant identification via association analysis using selected controls within the ADSP data and performing meta analysis across association results based on selected controls from non-ADSP data sets. Aim 1c. Perform endophenotype analyses including cognitive function measures, hippocampal volume and circulation beta-amyloid ADSP data in subjects for which these measures are available. Meta analysis will be conducted across ADSP and non-ADSP analysis results. Aim 2: To leverage ethnically-diverse and admixed populations to identify AD variants we will: Aim 2a. Estimate and account for global and local ancestry in all analyses; Aim 2b. Perform admixture mapping in samples of admixed ancestry; and Aim 2c. Perform ethnicity-specific and trans-ethnic meta-analyses. Aim 3: To identify putative therapeutic targets through functional characterization of genes and networks via bioinformatics, integrative ‘omics analyses. We will: Aim 3a. Annotate variants with their functional consequences using bioinformatic tools and publicly available “omics” data. Aim 3b. Prioritize results, group variants with shared function, and identify key genes functionally related to AD via weighted association analyses and network approaches. Analyses will be performed in coordination with the following PIs. Coordination will involve sharing expertise, analysis plans or analysis results. No individual level data will be shared across institutions. Philip De Jager, Columbia University; Eric Boerwinkle & Myriam Fornage, U of Texas Health Science Center, Houston; Sudha Seshadri, U of Texas, San Antonio; Ellen Wijsman, U of Washington. William Salerno, Baylor College of MedicineNon-Technical Research Use Statement:This proposal seeks to analyze existing genetic sequencing data generated as part of the Alzheimer’s Disease Sequencing Project (ADSP) including the ADSP Follow-up Study (FUS) with the goal of identifying genes and specific changes within those genes that either confer risk for Alzheimer’s Disease or provide protection from Alzheimer’s Disease. Analytic challenges include analysis of whole genome sequencing data, appropriately accounting for population structure across European ancestry, Hispanic, and African American participants, and interpreting results in the context of other genomic data available.
Total number of samples: 390
- NA390 (100.0%)
Dementia | ||
---|---|---|
Control | 83 | 21.3% |
Case | 155 | 39.7% |
Other | 152 | 39.0% |