Overview
To access the full data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00156) in the “Choose a Dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal.
The p-value only files are available in the “Open Access Dataset” tab.
Description
Approximately 30% of older adults exhibit the neuropathological features of Alzheimer’s disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology.
This study explored the genetic variants associated with resilience to Alzheimer’s disease, leveraging cognitive and pathology data harmonized across two datasets with autopsy measures of amyloid (ROS/MAP and ACT) and two datasets with amyloid PET (A4 and ADNI). Resilience phenotypes were calculated using a latent variable modeling approach, modeling better than expected cognition for a given level of amyloid pathology, following the method originally published in Hohman, et al, 2017 (PMID: 27743375). Cognitive resilience accounted for amyloid levels, age, and sex. Global cognitive resilience further incorporated education with cognitive resilience. Genotype data in each study underwent standard quality control and imputation onto the HRC reference panel (genome build 37). GWAS on both resilience phenotypes were performed including all samples as well as subsetted to only cognitively normal samples to evaluate resilience at the preclinical stage of disease.
Available Filesets
Name | Accession | Latest Release | Description |
---|---|---|---|
Resilience: Full summary statistics (application needed) | fsa000100 | NG00156.v1 | Full summary statistics |
Resilience: P-values only (open access) | fsa000101 | NG00156.v1 | P-values only |
View the File Manifest for a full list of files released in this dataset.
Related Studies
- Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient…
Consent Levels
Consent Level | Number of Subjects |
---|---|
DS-ADRD-IRB-PUB-NPU | NA |
Visit the Data Use Limitations page for definitions of the consent levels above.
Acknowledgement
Acknowledgment statement for any data distributed by NIAGADS:
Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.
Use the study-specific acknowledgement statements below (as applicable):
For investigators using any data from this dataset:
Please cite/reference the use of NIAGADS data by including the accession NG00156.
For investigators using Genetic variants and functional pathways associated with resilience to Alzheimer's disease (sa000048) data:
This research was supported in part by K01-AG049164, R01-AG059716, R21-AG05994, K12-HD043483, K24-AG046373, HHSN311201600276P, S10-OD023680, R01-AG034962, R01-NS100980, R01-AG056534, P30-AG010161, R01-AG057914, R01-AG15819, R01-AG17917, R13-AG030995, U01-AG061356, U01-AG006781, K99-AG061238, U01-AG46152, Howard Hughes Medical Institute James H. Gilliam Fellowship for Advanced Study (FEC), F31-AG059345 (FEC), UL1-TR000445 and the Vanderbilt Memory & Alzheimer’s Center. Data collection was supported through funding by NIA grants P50-AG016574, P50-AG005136, R01-AG032990, U01-AG046139, R01-AG018023, U01-AG006576, U01-AG006786, R01-AG025711, R01-AG017216, R01-AG003949, P30-AG19610, U01-AG024904, U01-AG032984, U24-AG041689, R01-AG046171, RF1-AG051550, 3U01-AG024904-09S4, NINDS grant R01-NS080820, CurePSP Foundation, and support from Mayo Foundation.
Related Publications
Dumitrescu L, et al. Genetic variants and functional pathways associated with resilience to Alzheimer’s disease. 2020 Aug 1;143(8):2561-2575. doi: 10.1093/brain/awaa209. PMID: 32844198; PMCID: PMC7447518. PubMed link
Approved Users
- Investigator:Belloy, MichaelInstitution:Washington University in St LouisProject Title:Elucidating sex-specific risk for Alzheimer's disease through state-of-the-art genetics and multi-omicsDate of Approval:January 6, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:• Objectives: In this project, we seek to holistically investigate the genetic and molecular drivers of sex dimorphism in Alzheimer’s disease across ancestries. • Study design: This study integrates large-scale population genetics with multi-omics and endophenotype analyses. We are integrating all data available from ADGC and ADSP, together with other data from AMP-AD and biobanks such as UKB, FinnGen, and MVP to conduct large-scale multi-ancestry GWAS, rare-variant gene aggregation analyses, QTL studies, PWAS, TWAS, etc. We also particularly focus on X chromosome association studies. The study design also interrogates interactions with ancestry, hormone exposures, and with APOE*4, as well as comparisons to non-stratified GWAS/XWAS of Alzheimer’s disease. Further, we will also employ genetic correlation analyses, mendelian randomization, colocalization, and pleiotropy analyses, to interrogate overlap with other complex traits to better understand the mechanisms underlying sex dimorphism in Alzheimer’s disease. • Analysis plan, including the phenotypic characteristics that will be evaluated in association with genetic variants: Our phenotypes will include Alzheimer’s disease risk, conversion risk, various endophenotypes (including amyloid/tau biomarkers, brain imaging metrics, etc.) as well as molecular traits. As noted above, we will conduct large-scale multi-ancestry GWAS, XWAS, rare-variant gene aggregation analyses, QTL studies, PWAS, TWAS, etc. Specific aims include interrogating these question and analyses on (1) the autosomes, (2) the X chromosome, and (3) leveraging sex stratified QTL studies to drive discovery of risk genes.Non-Technical Research Use Statement:Alzheimer’s disease (AD) manifests itself differently across men and women, but the genetic and molecular factors that drive this remain elusive. AD is the most common cause of dementia and till today remains largely untreatable. It is thus crucial to study the genetics of AD in a sex-specific manner, as this will help the field gain important insights into disease pathophysiology, identify novel sex-specific risk factors relevant to personalized genetic medicine, and uncover potential new AD drug targets that may benefit both sexes. This project uses large-scale genomics and multi-omics to elucidate novel sex agnostic and sex-specific AD risk genes. We will interrogate sex dimorphism for AD risk on the autosomes and the sex chromosomes. We similarly interrogate sex dimorphism in the genetic regulation of gene expression and protein levels, which we will integrate with genetic risk for Alzheimer’s disease to further discovery risk genes. Throughout, we will also interrogate how sex-specific risk for AD interactions with hormone exposures, ancestry, and the APOE*4 risk allele.
- Investigator:Cruchaga, CarlosInstitution:Washington University School of MedicineProject Title:The Familial Alzheimer Sequencing (FASe) ProjectDate of Approval:May 9, 2024Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:The goal of this study is to identify new genes and mutations that cause or increase risk for Alzheimer disease (AD), as well as protective factors. Individuals and families were selected from the Knight-ADRC (Washington University) and the NIA-LOAD study. Only families with at least three first-degree affected individuals were included. Families with pathogenic variants in the known AD or FTD genes, or in which APOE4 segregated with disease were excluded. At least two cases and one control were selected per family. Cases had an age at onset (AAO) after 65 yo and controls had a larger age at last assessment than the latest AAO within the family. Whole exome (WES) and whole genome sequencing (WGS) was generated for 1,235 individuals (285 families) that together with data from our collaborators and the ADSP family-based cohort (3,449 individuals and 757 families) will provide enough statistical power to identify new genes for AD. Dr. Tanzi (Harvard Medical School) will provide WGS from 400 families from the NIMH Alzheimer disease genetics initiative study. We will perform single variant and gene-based analyses to identify genes and variants that increase risk for disease in AD families. Single variant analysis will consist of a combination of association and segregation analyses. We will run family-based gene-based methods to identify genes that show and overall enrichment of variants in AD cases. We will also look for protective and modifier variants. To do this we will identify families loaded with AD cases, that also include individuals with a high burden of known risk variants but that do not develop the disease (escapees). We will use the sequence data and the family structure to identify variants that segregate with the escapee phenotype. The most promising variants and genes will be replicated in independent datasets (ADSP case-control, ADNI, Knight-ADRC, NIA-LOAD ). We will perform single variant and gene-based analyses to replicate the initial findings, and survival analysis to replicate the protective variants. We will select the most promising variants/genes for functional studiesNon-Technical Research Use Statement:Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding APP, PSEN1 and PSEN2. The identification of these genes led to the A?-cascade hypothesis and to the development of drugs that target this pathway. Recently, we have identified rare coding variants in TREM2, ABCA7, PLD3 and SORL1 with large effect sizes for risk for AD, confirming that rare coding variants play a role in the etiology of AD. In this proposal, we will identify rare risk and protective alleles using sequence data from families densely affected by AD. We hypothesize that these families are enriched for genetic risk factors. We already have sequence data from 695 families (2,462 individuals), that combined with the ADSP and the NIMH dataset will lead to a dataset of more than 1,042 families (4,684 individuals). Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found, which will lead to a better understanding of the biology of the disease.
- Investigator:Ertekin-Taner, NiluferInstitution:Mayo ClinicProject Title:CLEAR-ADDate of Approval:January 6, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:This U19 aims to bridge these knowledge gaps for discovery and validation of Centrally-linked Longitudinal pEripheral biomARkers of AD (CLEAR-AD) in multi-ethnic populations. CLEAR-AD U19 is based on the premise that AD is a complex disorder in which many biological pathways are disrupted due to multi-omic perturbations, which can be detected in brain and reflected in blood. The specific aims of CLEAR-AD are: 1) To discover CLPMS of the complex and heterogeneous AD pathophysiology and its co-pathologies. 2) To identify longitudinal CLPMS that detect and predict dynamic neuroimaging, fluid biomarker, and clinical changes across AD spectrum. 3) To characterize differences and similarities in CLPMS profiles across NHW, African American (AA) and Latino American (LA) participants to uncover biomarker patterns in multi-ethnic groups. 4) To make these vast resources available to the scientific community to amplify and accelerate its impact. In this U19, we will leverage NIH-funded ADNI, MCSA and ADRC cohorts of >3,700 multi-ethnic participants to generate >20,000 multi-omics measures (Omics Core) that will be processed and integrated with >48,000 harmonized AD cognitive, neuroimaging and fluid endophenotypes (Analytic Core). Using these data, we will identify brain region and cell-type specific CLPMS, which reflect biological subtypes of AD and disease stage (Project 1). We will discover longitudinal changes in CLPMS that predict cognitive and A/T/N/V progression (Project 2). We will define longitudinal cognitive and A/T/N/V changes and CLPMS in URP that are either conserved with NHW or population-specific (Project 3). This U19 will a) Identify the next generation of AD biomarkers with mechanistic insights; b) Establish a precision medicine approach for rigorous multi-omics biomarker discovery and validation in AD; c) Discover molecules that can serve as biomarkers and therapeutic targets; d) Enhance biomarker research in trial-ready multi-ethnic populations; and e) Generate and share a vast and harmonized resource of endophenotype and multi-omics data in NIH-funded cohorts.Non-Technical Research Use Statement:There is a clear and immediate need for the discovery of peripheral molecular signatures linked to central disease processes, core and co-pathologies in Alzheimer’s Disease (AD), that will serve as precision medicine blood-based biomarkers for diagnostic, prognostic, theragnostic and therapeutic purposes. AD is a complex disorder in which many biological pathways are disrupted due to multi-omic perturbations, which can be detected in brain and reflected in blood, i.e. centrally-linked peripheral molecular signatures (CLPMS). This U19 will leverage deeply phenotyped, longitudinal NIH-funded multi-ethnic cohorts and cross-disciplinary expertise for multi-omics data generation and its integration with harmonized AD endophenotypes, will share these data and utilize them in integrated U19 projects to discover CLPMS that will serve as the next generation of AD biomarkers.
- Investigator:Kamboh, M. IlyasInstitution:University of PittsburghProject Title:Genetics of Alzheimer's Disease and EndophenotypesDate of Approval:January 7, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:Objectives: We are requesting access to the NIAGADS datasets to augment our ongoing studies on the genetics of Alzheimer’s disease (AD) and AD-related endophenotypes being carried out by Kamboh and his group since 1995. We are doing GWAS using array genotypes, whole-exome sequencing and whole-genome sequencing on datasets derived from University of Pittsburgh ADRC and ancillary population-based longitudinal studies on dementia and biomarkers. Different available phenotypes include AD and non-AD dementia, age-at-set, disease progression and survival, neuroimaging, cognitive decline, plasma biomarkers for the core ATN and non-ATN pathologies. We also plan to expand on gene-gene interaction and sex-stratified analyses which require the actual genotype data. The NIAGADS datasets will be used for replication and meta-analysis, and for gene-gene interaction and sex-stratified analyses. Study Design: A case-control design will incorporate a diverse cohort of individuals with AD and age-matched controls. For quantitative traits (neuroimaging and plasma biomarkers, cognitive performance measures, indicators of disease progression), linear regression analyses will be performed to identify genetic loci. To ensure the findings are robust and inclusive, participants from diverse demographic backgrounds will be included, enabling the exploration of potential genetic variations across populations. Analysis Plan: We will conduct GWAS and targeted analyses on candidate genes on different AD and AD-related phenotypes. Primary phenotypic variables include AD disease status, age-at-onset, last age for controls, APOE genotype, cognitive decline trajectories, sex, and race. Analyses will evaluate the influence of specific genetic variants on disease risk, cognitive performance, and biomarker levels, considering both individual and interactive effects of the APOE genotype. Results will be adjusted for potential confounders, such as demographic factors, to ensure valid associations. Detail analytical methods are described in our published papers for case-control (PMID: 32651314;35694926), quantitative traits (PMID: 30361487;37666928), and cognitive decline (PMID: 37089073; 30954325).Non-Technical Research Use Statement:Our research group at the University of Pittsburgh (Pitt), has been working on the genetics of Alzheimer’s disease (AD) and AD-related endophenotypes for almost three decades, on data derived largely from the University of Pittsburgh Alzheimer’s Disease Research Center and ancillary dementia studies. We are requesting access to the NIAGADS genotype and phenotype datasets to augment our sample size to increase power to detect novel genetic associations with AD and related endophenotypes.