Overview
To access the full data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00160) in the “Choose a Dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal.
The p-value only files are available in the “Open Access Dataset” tab.
Description
This dataset contains the sex stratified and interaction summary statistics memory and memory slopes published in Eissman, et al, 2023 (Alzheimer’s and Dementia, PMID: 37984853). Memory scores were obtained from multiple ADSP cohorts (ACT, ADNI, NACC, ROS/MAP/MARS) at baseline and longitudinally. Memory scores were harmonized between cohorts using item-level data. Memory slopes were calculated with a null linear mixed-effects regression where the slope and the intercept were allowed to vary for each participant. Genotype data in each study underwent standard quality control and imputation onto the TOPMed reference panel (genome build 38).
All GWAS described were performed in males, in females, and with a sex-interaction. Covariates included baseline age and the first 5 genetic ancestry principal components, and additionally the sex-interaction GWAS contained a SNP-by-sex interaction term. We performed GWAS in ACT, ADNI, NACC, and ROS/MAP/MARS separately. Within each cohort, GWAS were performed among NHW and among NHB participants separately. X-Wide Association Studies (XWAS) were performed identically to the GWAS, except that male genotypes were coded as 0/2 (instead of 0/1) to account for X-chromosome dosage differences between males and females. Within each ancestry group, we additionally performed sex-stratified and sex-interaction GWAS and XWAS subgroup analyses, by first limiting the sample to cognitively unimpaired and then limiting to cognitively impaired. Male, female, and sex-interaction individual cohort GWAS were meta-analyzed implementing a fixed-effects model with beta and standard error input. Meta-analyses were performed within each ancestry group and furthermore within each diagnostic category mentioned above. Meta-analysis results were restricted to SNPs present in 3-4 (out of 4) cohorts. Results were further filtered to retain SNPs with a stratum specific MAF of >1%. These filtered meta-analysis results were leveraged for the cross-ancestry meta-analyses which was performed in the same manner as the previous ones. SNPs were retained if they were present in both ancestry groups. The summary statistics included here include both autosomal and X chromosome variants from the cross-ancestry meta-analysis.
Available Filesets
Name | Accession | Latest Release | Description |
---|---|---|---|
SexDiff_Memory: Full summary statistics (application needed) | fsa000071 | NG00160.v1 | Full summary statistics |
SexDiff_Memory: P-values only (open access) | fsa000072 | NG00160.v1 | P-values only |
View the File Manifest for a full list of files released in this dataset.
Related Studies
- This dataset contains the sex stratified and interaction summary statistics memory and memory slopes published in Eissman, et al, 2024 (Alzheimer's and Dementia, PMID pending). Memory scores were obtained from…
Consent Levels
Consent Level | Number of Subjects |
---|---|
DS-ADRD-IRB-PUB-NPU | NA |
Visit the Data Use Limitations page for definitions of the consent levels above.
Acknowledgement
Acknowledgment statement for any data distributed by NIAGADS:
Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.
Use the study-specific acknowledgement statements below (as applicable):
For investigators using any data from this dataset:
Please cite/reference the use of NIAGADS data by including the accession NG00160.
For investigators using Sex-specific genetic architecture of late-life memory performance (sa000040) data:
Data collection was supported through funding by NIA grants P30AG10161 (ROS), P30AG72975, R01AG15819 (ROSMAP; genomics and RNAseq), R01AG17917 (MAP), R01AG22018, R01AG30146, R01AG36042 (5hC methylation, ATACseq), RC2AG036547 (H3K9Ac), R01AG36836 (RNAseq), R01AG48015 (monocyte RNAseq) RF1AG57473 (single nucleus RNAseq), U01AG32984 (genomic and whole exome sequencing), U01AG46152 (ROSMAP AMP-AD, targeted proteomics), U01AG46161(TMT proteomics), U01AG61356 (whole genome sequencing, targeted proteomics, ROSMAP AMP-AD), the Illinois Department of Public Health (ROSMAP), and the Translational Genomics Research Institute (genomic). The results published here are in whole or in part based on data obtained from the AD Knowledge Portal (https://adknowledgeportal.synapse.org). Study data were provided by the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago. Additional phenotypic data can be requested at www.radc.rush.edu.
Data collection and sharing for ADNI were supported by National Institutes of Health Grant U01-AG024904 and Department of Defense (award number W81XWH-12-2-0012). ADNI is also funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Ann McKee, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD).
The Alzheimer’s Disease Genetics Consortium supported genotyping, and data processing of samples through National Institute on Aging (NIA) grants U01-AG032984. Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689). The Adult Changes in Thought Study, based at Kaiser Permanente Health Research Institute of Washington and the University of Washington, is supported through U19-AG066567.
Additional support includes R01-AG073439, U24-AG074855, K01-AG049164, R01-AG059716, R01-AG061518, R21-AG05994, K12-HD043483, K24-AG046373, HHSN311201600276P, S10-OD023680, R01-AG034962, R01-NS100980, R01-AG056534, P30-AG010161, R01-AG15819, R01-AG17917, U01-AG46152, R01-AG048927, U19-AG068753, U01 AG058654, R01-AG062634, R01-AG048927, U19-AG068753, K23:AG045966, the Nancy and Buster Alvord Endowment (C. D. K.), the Vanderbilt Clinical Translational Science Award (UL1-TR000445), the Vanderbilt Memory and Alzheimer’s Center, and the Vanderbilt Alzheimer’s Disease Research Center (P20-AGAG068082). Part of Figure 1 created with BioRender.com. Additional funding also includes F31-AG077791.
The ADSP Phenotype Harmonization Consortium (ADSP-PHC) is funded by NIA (U24 AG074855, U01 AG068057 and R01 AG059716). The ADSP-PHC cohorts include: Adult Changes in Thought (ACT, U01 AG006781, U19 AG066567), the Alzheimer’s Disease Centers (ADC, P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD), the Alzheimer's Disease Neuroimaging Initiative (ADNI), funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California, the Memory ang Aging Project at the Knight-ADRC (Knight-ADRC), supported by NIH grants R01AG064614, R01AG044546, RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877 to Carlos Cruchaga. The recruitment and clinical characterization of research participants at Washington University was supported by NIH grants P30AG066444, P01AG03991, and P01AG026276. Data collection and sharing for this project was supported by NIH grants RF1AG054080, P30AG066462, R01AG064614 and U01AG052410.
This work was supported by access to equipment made possible by the Hope Center for Neurological Disorders, the Neurogenomics and Informatics Center (NGI: https://neurogenomics.wustl.edu/) and the Departments of Neurology and Psychiatry at Washington University School of Medicine; the Minority Aging Research Study (MARS, R01 AG22018, R01 AG42210), the National Alzheimer’s Coordinating Center (NACC, U01 AG016976, U24 AG072122),the National Institute on Aging Late Onset Alzheimer's Disease Family Study (NIA- LOAD, U24 AG056270), the Religious Orders Study (ROS, P30 AG10161, P30 AG72975, R01 AG15819, R01 AG42210), the RUSH Memory and Aging Project (MAP, R01 AG017917, R01 AG42210), the National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the University of Pennsylvania, and the Genome Center for Alzheimer’s Disease (U54AG05247), funded by NIA.
The Alzheimer's Disease Genetics Consortium supported collection and genotyping of samples used in this study through National Institute on Aging (NIA) grants U01AG032984 and RC2AG036528. Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689-01), The Center for Applied Genomics at the Children’s Hospital of Philadelphia Research Institute performed genotyping of samples. The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD) Samples from the National Centralized Repository for Alzheimer’s Disease and Related Dementias (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this study. We thank contributors who collected samples used in this study, as well as patients and their families, whose help and participation made this work possible. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Rush University grants P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG030146, R01 AG01101, RC2 AG036650, R01 AG22018, UO1 AG06781, UO1 HG004610.
Related Publications
Eissman JM., et al. Sex-specific genetic architecture of late-life memory performance. Alzheimers Dement. 2023 Nov 20. doi: 10.1002/alz.13507. Pubmed Link
Approved Users
- Investigator:Belloy, MichaelInstitution:Washington University in St LouisProject Title:Elucidating sex-specific risk for Alzheimer's disease through state-of-the-art genetics and multi-omicsDate of Approval:January 6, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:• Objectives: In this project, we seek to holistically investigate the genetic and molecular drivers of sex dimorphism in Alzheimer’s disease across ancestries. • Study design: This study integrates large-scale population genetics with multi-omics and endophenotype analyses. We are integrating all data available from ADGC and ADSP, together with other data from AMP-AD and biobanks such as UKB, FinnGen, and MVP to conduct large-scale multi-ancestry GWAS, rare-variant gene aggregation analyses, QTL studies, PWAS, TWAS, etc. We also particularly focus on X chromosome association studies. The study design also interrogates interactions with ancestry, hormone exposures, and with APOE*4, as well as comparisons to non-stratified GWAS/XWAS of Alzheimer’s disease. Further, we will also employ genetic correlation analyses, mendelian randomization, colocalization, and pleiotropy analyses, to interrogate overlap with other complex traits to better understand the mechanisms underlying sex dimorphism in Alzheimer’s disease. • Analysis plan, including the phenotypic characteristics that will be evaluated in association with genetic variants: Our phenotypes will include Alzheimer’s disease risk, conversion risk, various endophenotypes (including amyloid/tau biomarkers, brain imaging metrics, etc.) as well as molecular traits. As noted above, we will conduct large-scale multi-ancestry GWAS, XWAS, rare-variant gene aggregation analyses, QTL studies, PWAS, TWAS, etc. Specific aims include interrogating these question and analyses on (1) the autosomes, (2) the X chromosome, and (3) leveraging sex stratified QTL studies to drive discovery of risk genes.Non-Technical Research Use Statement:Alzheimer’s disease (AD) manifests itself differently across men and women, but the genetic and molecular factors that drive this remain elusive. AD is the most common cause of dementia and till today remains largely untreatable. It is thus crucial to study the genetics of AD in a sex-specific manner, as this will help the field gain important insights into disease pathophysiology, identify novel sex-specific risk factors relevant to personalized genetic medicine, and uncover potential new AD drug targets that may benefit both sexes. This project uses large-scale genomics and multi-omics to elucidate novel sex agnostic and sex-specific AD risk genes. We will interrogate sex dimorphism for AD risk on the autosomes and the sex chromosomes. We similarly interrogate sex dimorphism in the genetic regulation of gene expression and protein levels, which we will integrate with genetic risk for Alzheimer’s disease to further discovery risk genes. Throughout, we will also interrogate how sex-specific risk for AD interactions with hormone exposures, ancestry, and the APOE*4 risk allele.
- Investigator:Cruchaga, CarlosInstitution:Washington University School of MedicineProject Title:The Familial Alzheimer Sequencing (FASe) ProjectDate of Approval:May 9, 2024Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:The goal of this study is to identify new genes and mutations that cause or increase risk for Alzheimer disease (AD), as well as protective factors. Individuals and families were selected from the Knight-ADRC (Washington University) and the NIA-LOAD study. Only families with at least three first-degree affected individuals were included. Families with pathogenic variants in the known AD or FTD genes, or in which APOE4 segregated with disease were excluded. At least two cases and one control were selected per family. Cases had an age at onset (AAO) after 65 yo and controls had a larger age at last assessment than the latest AAO within the family. Whole exome (WES) and whole genome sequencing (WGS) was generated for 1,235 individuals (285 families) that together with data from our collaborators and the ADSP family-based cohort (3,449 individuals and 757 families) will provide enough statistical power to identify new genes for AD. Dr. Tanzi (Harvard Medical School) will provide WGS from 400 families from the NIMH Alzheimer disease genetics initiative study. We will perform single variant and gene-based analyses to identify genes and variants that increase risk for disease in AD families. Single variant analysis will consist of a combination of association and segregation analyses. We will run family-based gene-based methods to identify genes that show and overall enrichment of variants in AD cases. We will also look for protective and modifier variants. To do this we will identify families loaded with AD cases, that also include individuals with a high burden of known risk variants but that do not develop the disease (escapees). We will use the sequence data and the family structure to identify variants that segregate with the escapee phenotype. The most promising variants and genes will be replicated in independent datasets (ADSP case-control, ADNI, Knight-ADRC, NIA-LOAD ). We will perform single variant and gene-based analyses to replicate the initial findings, and survival analysis to replicate the protective variants. We will select the most promising variants/genes for functional studiesNon-Technical Research Use Statement:Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding APP, PSEN1 and PSEN2. The identification of these genes led to the A?-cascade hypothesis and to the development of drugs that target this pathway. Recently, we have identified rare coding variants in TREM2, ABCA7, PLD3 and SORL1 with large effect sizes for risk for AD, confirming that rare coding variants play a role in the etiology of AD. In this proposal, we will identify rare risk and protective alleles using sequence data from families densely affected by AD. We hypothesize that these families are enriched for genetic risk factors. We already have sequence data from 695 families (2,462 individuals), that combined with the ADSP and the NIMH dataset will lead to a dataset of more than 1,042 families (4,684 individuals). Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found, which will lead to a better understanding of the biology of the disease.
- Investigator:Greicius, MichaelInstitution:Stanford University School of MedicineProject Title:Examining Genetic Associations in Neurodegenerative DiseasesDate of Approval:December 19, 2024Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:We are studying the effects of rare (minor allele frequency < 5%) genetic variants on the risk of developing late-onset Alzheimer’s Disease (AD). We are interested in variants that have a protective effect in subjects who are at an increased genetic risk, or variants that lead to multiple dementias. Our aim is to identify any genetic variants that are present in the “case” group but not the “AD control” groups for both types of variants. The raw data we receive will be annotated to identify SNP locations and frequencies using existing databases such as 1,000 Genomes. We will filter the data based on genetic models such as compounded heterozygosity, recessive and dominant models to identify different types of variants.Non-Technical Research Use Statement:Current genetic understanding of Alzheimer’s Disease (AD) does not fully explain its heritability. The APOE4 allele is a well-established risk factor for the development of Alzheimer’s Disease (AD). However, some individuals who carry APOE4 remain cognitively healthy until advanced ages. Additionally, the cause of mixed dementia pathology development in individuals remains largely unexplained. We aim to identify genetic factors associated with these “protected” and mixed pathology phenotypes.
- Investigator:Kamboh, M. IlyasInstitution:University of PittsburghProject Title:Genetics of Alzheimer's Disease and EndophenotypesDate of Approval:January 7, 2025Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:Objectives: We are requesting access to the NIAGADS datasets to augment our ongoing studies on the genetics of Alzheimer’s disease (AD) and AD-related endophenotypes being carried out by Kamboh and his group since 1995. We are doing GWAS using array genotypes, whole-exome sequencing and whole-genome sequencing on datasets derived from University of Pittsburgh ADRC and ancillary population-based longitudinal studies on dementia and biomarkers. Different available phenotypes include AD and non-AD dementia, age-at-set, disease progression and survival, neuroimaging, cognitive decline, plasma biomarkers for the core ATN and non-ATN pathologies. We also plan to expand on gene-gene interaction and sex-stratified analyses which require the actual genotype data. The NIAGADS datasets will be used for replication and meta-analysis, and for gene-gene interaction and sex-stratified analyses. Study Design: A case-control design will incorporate a diverse cohort of individuals with AD and age-matched controls. For quantitative traits (neuroimaging and plasma biomarkers, cognitive performance measures, indicators of disease progression), linear regression analyses will be performed to identify genetic loci. To ensure the findings are robust and inclusive, participants from diverse demographic backgrounds will be included, enabling the exploration of potential genetic variations across populations. Analysis Plan: We will conduct GWAS and targeted analyses on candidate genes on different AD and AD-related phenotypes. Primary phenotypic variables include AD disease status, age-at-onset, last age for controls, APOE genotype, cognitive decline trajectories, sex, and race. Analyses will evaluate the influence of specific genetic variants on disease risk, cognitive performance, and biomarker levels, considering both individual and interactive effects of the APOE genotype. Results will be adjusted for potential confounders, such as demographic factors, to ensure valid associations. Detail analytical methods are described in our published papers for case-control (PMID: 32651314;35694926), quantitative traits (PMID: 30361487;37666928), and cognitive decline (PMID: 37089073; 30954325).Non-Technical Research Use Statement:Our research group at the University of Pittsburgh (Pitt), has been working on the genetics of Alzheimer’s disease (AD) and AD-related endophenotypes for almost three decades, on data derived largely from the University of Pittsburgh Alzheimer’s Disease Research Center and ancillary dementia studies. We are requesting access to the NIAGADS genotype and phenotype datasets to augment our sample size to increase power to detect novel genetic associations with AD and related endophenotypes.