To access this data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00153) in the “Choose a Dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal.

Description

DNA methylation assays were conducted on a non-random subsample (n=4,104) of participants who participated in the 2016 Venous Blood Study. The sample includes all the participants of the 2016 Healthy Cognitive Aging Project (HCAP) who have provided blood samples, plus younger participants designated for future HCAP assessments, and a subsample of HCAP non-participants. This subsample fully represents the entire HRS sample.  A total of 4,018 samples passed QC.  The sample is 58% female and has a median age of 68.7 years.  It is racially diverse: Non Hispanic White (n=2,669, 66.4%), Non Hispanic Black (n=658, 16.4%), Hispanic (n=567, 14.11%), Non Hispanic Other (n=124, 3%).  The sample is also socioeconomically diverse.  The educational distribution is less than High School (16.8%), High School / GED (52.12%), Some College (5.97%), College + (24.1%), Other (1%).

Genotype data for HRS subjects is available at NG00119 – Health and Retirement Study Genotype Data 2006-2012, and APOE phenotype data for HRS subjects is available at NG00132 – Health and Retirement Study (HRS) APOE and Serotonin Transporter Alleles.  To obtain subject ID mapping between HRS datasets, please submit a Genetic Data Cross-Reference Request Form on the HRS website.

Sample Summary per Data Type

Sample SetAccessionData TypeNumber of Samples
Health and Retirement Study (HRS) DNA Methylationsnd10055DNA Methylation4,018

Available Filesets

NameAccessionLatest ReleaseDescription
HRS DNAm: Methylation beta values, IDATs, Phenotypes, and Documentationfsa000069NG00153.v1Methylation beta values, IDATs, Phenotypes, and Documentation

View the File Manifest for a full list of files released in this dataset.

Provided in this dataset is a matrix of DNA methylation beta values that underwent a process of quality control measures by the Survey Research Center, a center within the Institute for Social Research at the University of Michigan. DNA methylation assays were performed on 4,018 subjects at the University of Minnesota on the Infinium MethylationEPIC v1.0, which captured DNA methylation data for 836,660 methylation probes.

Sample SetAccession NumberNumber of Subjects
Health and Retirement Study (HRS) DNA Methylationsnd100554,018
Consent LevelNumber of Subjects
GRU-IRB-PUB-NPU4,018

Visit the Data Use Limitations page for definitions of the consent levels above.

Total number of approved DARs: 1
  • Investigator:
    Cruchaga, Carlos
    Institution:
    Washington University School of Medicine
    Project Title:
    The Familial Alzheimer Sequencing (FASe) Project
    Date of Approval:
    May 9, 2024
    Request status:
    Approved
    Research use statements:
    Show statements
    Technical Research Use Statement:
    The goal of this study is to identify new genes and mutations that cause or increase risk for Alzheimer disease (AD), as well as protective factors. Individuals and families were selected from the Knight-ADRC (Washington University) and the NIA-LOAD study. Only families with at least three first-degree affected individuals were included. Families with pathogenic variants in the known AD or FTD genes, or in which APOE4 segregated with disease were excluded. At least two cases and one control were selected per family. Cases had an age at onset (AAO) after 65 yo and controls had a larger age at last assessment than the latest AAO within the family. Whole exome (WES) and whole genome sequencing (WGS) was generated for 1,235 individuals (285 families) that together with data from our collaborators and the ADSP family-based cohort (3,449 individuals and 757 families) will provide enough statistical power to identify new genes for AD. Dr. Tanzi (Harvard Medical School) will provide WGS from 400 families from the NIMH Alzheimer disease genetics initiative study. We will perform single variant and gene-based analyses to identify genes and variants that increase risk for disease in AD families. Single variant analysis will consist of a combination of association and segregation analyses. We will run family-based gene-based methods to identify genes that show and overall enrichment of variants in AD cases. We will also look for protective and modifier variants. To do this we will identify families loaded with AD cases, that also include individuals with a high burden of known risk variants but that do not develop the disease (escapees). We will use the sequence data and the family structure to identify variants that segregate with the escapee phenotype. The most promising variants and genes will be replicated in independent datasets (ADSP case-control, ADNI, Knight-ADRC, NIA-LOAD ). We will perform single variant and gene-based analyses to replicate the initial findings, and survival analysis to replicate the protective variants. We will select the most promising variants/genes for functional studies
    Non-Technical Research Use Statement:
    Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding APP, PSEN1 and PSEN2. The identification of these genes led to the A?-cascade hypothesis and to the development of drugs that target this pathway. Recently, we have identified rare coding variants in TREM2, ABCA7, PLD3 and SORL1 with large effect sizes for risk for AD, confirming that rare coding variants play a role in the etiology of AD. In this proposal, we will identify rare risk and protective alleles using sequence data from families densely affected by AD. We hypothesize that these families are enriched for genetic risk factors. We already have sequence data from 695 families (2,462 individuals), that combined with the ADSP and the NIMH dataset will lead to a dataset of more than 1,042 families (4,684 individuals). Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found, which will lead to a better understanding of the biology of the disease.

Acknowledgment statement for any data distributed by NIAGADS:

Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.

Use the study-specific acknowledgement statements below (as applicable):

For investigators using any data from this dataset:

Please cite/reference the use of NIAGADS data by including the accession NG00153.

For investigators using Health and Retirement Study (sa000021) data:

HRS is supported by the National Institute on Aging (NIA U01AG009740). The genotyping was partially funded by separate awards from NIA (RC2 AG036495 and RC4 AG039029). Our genotyping was conducted by the NIH Center for Inherited Disease Research (CIDR) at Johns Hopkins University. Genotyping quality control and final preparation were performed by the Genetics Coordinating Center at University of Washington (Phases 1-3) and the University of Michigan (Phase 4).

Crimmins EM, et al. Associations of Age, Sex, Race/Ethnicity, and Education With 13 Epigenetic Clocks in a Nationally Representative U.S. Sample: The Health and Retirement Study. J Gerontol A Biol Sci Med Sci. 2021 May 22;76(6):1117-1123. doi: 10.1093/gerona/glab016. PMID: 33453106; PMCID: PMC8140049. PubMed link

Faul JD, et al. Epigenetic-based age acceleration in a representative sample of older Americans: Associations with aging-related morbidity and mortality. Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2215840120. doi: 10.1073/pnas.2215840120. PMID: 36802439; PMCID: PMC9992763. PubMed link