Overview
To access the full data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00158) in the “Choose a Dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal. The p-value only files are available in the “Open Access Dataset” tab.
Description
Autopsy measures of Alzheimer’s disease neuropathology have been leveraged as endophenotypes in previous genome-wide association studies (GWAS). However, despite evidence of sex differences in Alzheimer’s disease risk, sex-stratified models have not been incorporated into previous GWAS analyses.
We looked for sex-specific genetic associations with Alzheimer’s disease endophenotypes from six brain bank data repositories. These cohorts (LOAD, Mayo, ACT, NACC, ROS/MAP, TGEN) contained neuropathology and genotype data for 2,701 males and 3,275 females. Neuropathology data were harmonized across cohorts and genotypes underwent standard quality control and imputation (genome build 37). Stratified GWAS assessed for associations with neuropathology within males and females separately and genome-wide significant loci in each sex were tested for sex interactions.
Available Filesets
Name | Accession | Latest Release | Description |
---|---|---|---|
Sex Differences Neuropath: Full Summary Statistics (application needed) | fsa000093 | NG00158.v1 | Full Summary Statistics |
Sex Differences Neuropath: P-values only (open access) | fsa000094 | NG00158.v1 | P-values only |
View the File Manifest for a full list of files released in this dataset.
Related Studies
Consent Levels
Consent Level | Number of Subjects |
---|---|
DS-ADRD-IRB-PUB-NPU | NA |
Visit the Data Use Limitations page for definitions of the consent levels above.
Approved Users
- Investigator:Cruchaga, CarlosInstitution:Washington University School of MedicineProject Title:The Familial Alzheimer Sequencing (FASe) ProjectDate of Approval:May 9, 2024Request status:ApprovedResearch use statements:Show statementsTechnical Research Use Statement:The goal of this study is to identify new genes and mutations that cause or increase risk for Alzheimer disease (AD), as well as protective factors. Individuals and families were selected from the Knight-ADRC (Washington University) and the NIA-LOAD study. Only families with at least three first-degree affected individuals were included. Families with pathogenic variants in the known AD or FTD genes, or in which APOE4 segregated with disease were excluded. At least two cases and one control were selected per family. Cases had an age at onset (AAO) after 65 yo and controls had a larger age at last assessment than the latest AAO within the family. Whole exome (WES) and whole genome sequencing (WGS) was generated for 1,235 individuals (285 families) that together with data from our collaborators and the ADSP family-based cohort (3,449 individuals and 757 families) will provide enough statistical power to identify new genes for AD. Dr. Tanzi (Harvard Medical School) will provide WGS from 400 families from the NIMH Alzheimer disease genetics initiative study. We will perform single variant and gene-based analyses to identify genes and variants that increase risk for disease in AD families. Single variant analysis will consist of a combination of association and segregation analyses. We will run family-based gene-based methods to identify genes that show and overall enrichment of variants in AD cases. We will also look for protective and modifier variants. To do this we will identify families loaded with AD cases, that also include individuals with a high burden of known risk variants but that do not develop the disease (escapees). We will use the sequence data and the family structure to identify variants that segregate with the escapee phenotype. The most promising variants and genes will be replicated in independent datasets (ADSP case-control, ADNI, Knight-ADRC, NIA-LOAD ). We will perform single variant and gene-based analyses to replicate the initial findings, and survival analysis to replicate the protective variants. We will select the most promising variants/genes for functional studiesNon-Technical Research Use Statement:Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding APP, PSEN1 and PSEN2. The identification of these genes led to the A?-cascade hypothesis and to the development of drugs that target this pathway. Recently, we have identified rare coding variants in TREM2, ABCA7, PLD3 and SORL1 with large effect sizes for risk for AD, confirming that rare coding variants play a role in the etiology of AD. In this proposal, we will identify rare risk and protective alleles using sequence data from families densely affected by AD. We hypothesize that these families are enriched for genetic risk factors. We already have sequence data from 695 families (2,462 individuals), that combined with the ADSP and the NIMH dataset will lead to a dataset of more than 1,042 families (4,684 individuals). Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found, which will lead to a better understanding of the biology of the disease.
Acknowledgement
Acknowledgment statement for any data distributed by NIAGADS:
Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.
Use the study-specific acknowledgement statements below (as applicable):
For investigators using any data from this dataset:
Please cite/reference the use of NIAGADS data by including the accession NG00158.
For investigators using Sex differences in the genetic predictors of Alzheimer’s pathology – Dumitrescu, et al. 2019 (sa000044) data:
This research was supported in part by K01 AG049164, R21 AG05994, K12 HD043483, K24 AG046373, HHSN311201600276P, S10 OD023680, R01 AG034962, R01 HL111516, R01 NS100980, R01 AG056534, P30 AG10161, RF1 AG15819, R01 AG17917, R01 AG30146, R01 AG019085, R01 AG15819, R01 AG30146, R01 AG027161, R01 AG021155, R01 AG037639, U01 AG46152, U01 AG006781, U01 AG032984, U01 HG004610, U01 HG006375, U24 AG021886, U24 AG041689, R01 AG044546, P01 AG003991, RF1 AG053303, R01 AG035083, R01 NS085419, UL1 TR000445, KL2 TR000446, TL1 TR000447, S10 OD023680, and the Alzheimer’s Association (NIRG-11–200110), further supported in part by the Intramural Research Program, NIA, NIH and the Vanderbilt Memory & Alzheimer’s Center. Y.D. was supported by an NIMH training grant (T32MH014877). Support for P.D.J. was provided by R01 AG048015. H.Z. is a Wallenberg Academy Fellow and is further supported but the Swedish and European Research Councils and the UK Dementia Research Institute. KB holds the Torsten Söderberg professorship at the Royal Swedish Academy of Sciences.
The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Steven Ferris, PhD), P30 AG013854 (PI M. Marsel Mesulam, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG016570 (PI David Teplow, PhD), P50 AG005131 (PI Douglas Galasko, MD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P50 AG005136 (PI Thomas Grabowski, MD, PhD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), and P50 AG005681 (PI John Morris, MD).
Related Publications
Dumitrescu L., et al. Sex differences in the genetic predictors of Alzheimer’s pathology. Brain. 2019 Sep. doi: 10.1093/brain/awz206. PubMed link