To access this data, please log into DSS and submit an application.
Within the application, add this dataset (accession NG00162) in the “Choose a Dataset” section.
Once approved, you will be able to log in and access the data within the DARM portal.


Characterizing the mechanisms of somatic mutations in the brain is important for understanding aging and disease, but little is known about the mutational patterns of different cell types. We performed whole-genome sequencing of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals (0.4 to 104 years old) and compared the rates and signatures of somatic single nucleotide variants (sSNVs) and small insertions and deletions (indels) from each cell type. We further correlated this data with single-cell RNA (scRNA-seq) and chromatin accessibility (scATAC-seq) data generated from the same brains to compare the mutagenic processes in glia and neurons.

single-cell whole genome sequencing (scWGS):

Fluorescence-activated nuclear sorting (FANS) was used to isolate SOX10 cells from fresh frozen human brain tissue from the prefrontal cortex. Whole-genome amplification was performed using MDA or PTA following manufacturer guidelines. Libraries for sequencing were generated using the KAPA HyperPlus kit (Roche) using dual indexes and were sequenced across 5 lanes of Ilumina NovaSeq6000 (2x150bp), targeting 20x coverage (75Gbp)/sample. SCAN2 was used to identify single-cell somatic mutations.

single-cell RNA sequencing (scRNA-seq):

Sequencing libraries were prepared using the 10X Genomics Chromium Next GEM Single Cell Reagent Kit v3.1 with nuclear pellets from fresh frozen human brain tissue from the prefrontal cortex of 2 individuals. Each library preparation was submitted for paired-end single indexing sequencing on Illumina HiSeqX or NovaSeq6000 targeting ~50,000 read pairs per nucleus. The data was demultiplexed using bcl2fastq. scRNA-seq FASTQ files were processed using the 10X Genomics cellranger count pipeline for gene expression to perform alignment to hg19, barcode counting, UMI counting, and generation of feature-barcode matrices. Cell Ranger filtered count matrices were used for downstream analysis using Seurat 3.0. Each library was further filtered for cells with > 200 and < 3000 genes and <5% mitochondrial genes, and genes with <10,000 UMI counts and >3 cells. RNA counts were normalized using the LogNormalize method and the 2,000 most highly variable features were identified using the vst method. Data were scaled by regressing out the percentage of mitochondrial genes. Non-linear dimensional reduction and clustering was then performed. DoubletFinder was used to remove doublets using optimal parameters as per the paramSweep function. Finally, cell-type identities were assigned to each cluster in the Uniform Manifold Approximation and Projection (UMAP) based on expression of known brain cell-type markers.

single-cell ATAC sequencing (scATAC-seq):

Nuclei were obtained from the same brain region as used for single-cell whole-genome amplification. Nuclei derived from different individuals were processed for transposition separately, before loading to the 10x Chromium Controller for GEM generation, barcoding, and library construction, as per manufacturer instructions. Libraries were submitted for paired-end dual index sequencing on one flow cell of Illumina S2 NovaSeq6000 (100 cycles) to obtain ~50,000 reads per nucleus. Sequencing data were demultiplexed using bcl2fastq and mkfastq. cellranger-atac count v1.1.0 was run separately on the resulting FASTQ files for each scATAC-seq library (one per individual) with default parameters and the vendor-provided hg19 reference. Results from the individual library analyses were then merged by cellranger-atac aggr –normalize-depth. scATAC-seq data were analyzed by Signac v1.1.0 and Seurat v3 following the authors’ instructions.

Sample Summary per Data Type

Sample SetAccessionData TypeNumber of Samples
Oligodendrocytes single-cell whole genome and RNA sequencing snd10084scATAC-seq, scRNA-seq, WGS123

Available Filesets

NameAccessionLatest ReleaseDescription
single-cell ATAC sequencing (scATAC-seq)fsa000106NG00162.v1scATAC-seq
single-cell RNA sequencing (scRNA-seq)fsa000107NG00162.v1scRNA-seq
single-cell whole genome sequencing (scWGS)fsa000108NG00162.v1scWGS

View the File Manifest for a full list of files released in this dataset.

The first release includes bam and vcf files for whole-genome sequencing from 15 participants, fastq files for single-cell RNA sequencing from 2 participants, bed and fastq files for single-cell ATAC sequencing from 9 participants. Samples were sequenced using Ilumina NovaSeq6000.

Sample SetAccessionData TypeNumber of Subjects
Oligodendrocytes single-cell whole genome and RNA sequencing snd10084scATAC-seq, scRNA-seq, WGS15
Consent LevelNumber of Subjects

Visit the Data Use Limitations page for definitions of the consent levels above.

Acknowledgment statement for any data distributed by NIAGADS:

Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689), funded by the National Institute on Aging.

Use the study-specific acknowledgement statements below (as applicable):

For investigators using any data from this dataset:

Please cite/reference the use of NIAGADS data by including the accession NG00162.

For investigators using Rates and mechanisms of age-related somatic mutation in normal and Alzheimer brain (sa000051) data:

Sequencing data from this study was generated with support from the National Institute on Aging (R01AG070921) to Christopher A. Walsh at Boston Children’s Hospital.

Ganz J, Luquette LJ, et al. Contrasting somatic mutation patterns in aging human neurons and oligodendrocytes. Cell. 2024 Apr. doi: 10.1016/j.cell.2024.02.025. PubMed link